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With aid of the virial theorem formulated for the energy differences of two electronic states some
theorems on the wave functions of diatomic molecules have been proven. It is shown how proper
Rydberg states can be distinguished from other electronic states with a diffuse outer orbital by virtue
of the virial theorem and that a singlet-triplet pair of excited states cannot have the same equilibrium
geometry and identical orbitals simultaneously. Furthermore if the two states have the same dissociation
limit a theorem on the differences of the kinetic and the potential energy can be derived which allows
an understanding of the shape of the electronic wave functions. As an application the wave functions
and the ordering of the lowest states of Hy and H, have been discussed.
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1. Introduction

Recently different authors have pointed out that the common interpretation of
Hund’s rule can be shown to be incomplete [1-8]. The virial theorem has been
invoked in some of these discussions [3, 4, 7]. This theorem is a basic mechanical
law which states that the expectation values of the kinetic energy T, the potential
energy V and the total energy E are connected by the relations (1a, b):

T=— (1a)
V=2E (1b)

if we consider a force-free atomic or molecular system held together by Coulombic
forces. (1b) follows from (1a) and T+ V=E; for T, V, E the energies of any state
can be substituted. For molecules the total energy sometimes is replaced by the
total electronic energy 7, V.,;, E,, and the virial theorem has a somewhat different
form (see Sect. 2). Hereby however the separability of electronic and nuclear
motion and the existence of potential surfaces are assumed.

Consider two different bound states of an atom not degenerate with one.
another. If the two states do not arise from the same electronic configuration,
within the terminology of the MO approximation we can say that in the higher state
higher lying orbitals are occupied which are empty in the lower state. Higher lying
atomic orbitals are in general characterised by a greater number of nodes and there-
fore the kinetic energy of the electrons should increase. On the other hand the
virial theorem (1a) requires that the higher state has less kinetic energy than the
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lower one (E is always negative). As a consequence excited atomic orbitals are
much more spread out than low lying ones for so they can have more nodes and
less kinetic energy (a reduced curvature) at the same time.

This result also supports the estimation of Ahlrichs for the long-range behavi-
our of electronic wave functions [9—11] saying that any bound state wave function
upon removal of one electron to infinity decays faster than an exponential function
with an exponent proportional to the square root of the ionisation energy of the
state in question. One is tempted to conclude hereupon that a bound electronic
wave function is the more diffuse the closer its energy lies to the ionisation limit.
This conclusion applies for Rydberg-like systems (see Sect. 3) but we shall show a
counterexample in Sect. 4. Let us turn now to two states belonging to the same
electronic configuration like !P and 3P of He (1s) (2p). Here in contrast to the
simple MO picture the 1s and 2p orbitals cannot be identical for both states but in
the higher state (! P) there is an expansion, in the lower one a contraction of the 2p
orbital because of the virial theorem (1a) and there is more electron repulsion in
3P [2, 5, 20, 21]. With identical orbitals both states would have the same kinetic
and nuclear attraction energy and the singlet-triplet splitting is determined by the
difference of the electron repulsion. Although this crude picture predicts a wrong
partitioning of the total energy, it has been shown by Katriel [4] that the exchange
integral (1s 2p/2p 1s) determines the sign and to a smaller extent also the magnitude
of the singlet-triplet splitting. The variational principle acts as a “‘driving force”
and yields in general useful results for the total energy even if applied to trial func-
tions with insufficient flexibility. The virial theorem on the other hand allows a
qualitative discussion of the shape of the correct wave function but it cannot replace
the variational principle as a tool for calculating wave functions.

2. Molecules

Application of the virial theorem to molecules suggests a restriction to diatomic
molecules. Because of the appearance of two further parameters — the interatomic
distance R and the slope of the potential curve E'=dE/dR [12, 13] — it is more
difficult to draw precise conclusions than in the atomic case. However Ruedenberg
has successfully studied the binding properties of H S with the aid of the virial
theorem [14, 15]. For small R we have the additional drawback that the results
cannot be compared with the limiting case of the “united atom’ unless the nuclear
repulsion is subtracted from the energy expression. Some of these difficulties can
be avoided if we formulate the virial theorem for the energy differences AE, AV,
AT of two different electronic states. 4 means hereby the difference “upper state
minus lower state” ; hence AE >0 (we shall not consider a case of crossing poten-
tial curves). The virial theorem reads now [7]

AT=—AE—RAE’ (2a)
AV=24E+ RAE’ (2b)

From (2) we see at once — since R is positive — that diverging potential curves
(AE’>0) lead to a more negative AT and a more positive 4V than would be the
case for an atom with the same AE, whereas converging potential curves (4E" <0)
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Fig. 1. Schematic illustration of Eq. (2) for the case of two states with the same dissociation limit.
The decomposition of the total energy difference AF into poténtial and kinetic energy AV, AT is shown
asa function of R. The atomic region (left), molecular region (mlddle) and the region of nearly separated
atoms (right) are indicated.

yield a less negative AT and a less positive AV. This second case is of interest
because in contrast to the virial theorem for atoms AT>0 or 4V <0 can also
occur. In fact it follows from (2) that AT=0 if AE(R) vanishes proportional to
R~ ! or that AV=0if AE goes proportional to R~ 2. Let us therefore consider the
special case of two potential curves leading to the same dissociation limit (e.g.
12,7 and *Z," of H,, see [16-18]). The shapes of the curves for large R depend on
the fragment charges: Ion pairs show R ™! curves and attraction even at large dis-
tances whereas neutral fragments will have curves which are roughly proportional
to exp(—AR) (attraction or repulsion). The same exponential decrease of AE
applies for ions dissociating into a charged and a neutral fragment. Therefore for
such a pair we can divide the range of possible R values into three regions (see
Fig. 1). An “atomic” region near R=0 is characterised by 4T<0, AV >0. For
sufficiently large R we have a region of “nearly separated atoms™ with AT >0,
AV <0 and between these two there is a “molecular region’ with AT>0, AV>0
(for AT+ AV =AE >0 everywhere). For fluctuating AE even more changes of the
signs of AT and AV could occur. In the limit of dissociation (R = co) we have from
(2) AE=AV=AT=0since AE' goes to zero much faster than R™*.

The meaning of these three regions can be explained as follows: In the atomic
region the electrons see rather a nearly pointlike positive charge than an extended
nuclear skeleton. The potential curves are mainly determined by the nuclear
repulsion, so AE’~0. Therefore the electronic wave functions behave like atomic
functions: the higher the energy of a (bound) state, the lower is its kinetic energy.
This implies that the higher lying components of a given electronic configuration
(e.g. singlets) show orbital expansion compared with the lower lying components
(triplets) similar to atoms [3, 7, 19].

The situation in the molecular region corresponds to the simple molecular
orbital (MO) picture where the higher lying orbital and hence in general the
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higher lying state are characterised by a larger number of nodes and therefore by a
higher kinetic energy. Furthermore in the MO model also the potential energy is
often higher (less negative) for the higher lying orbital as can be seen considering
e.g. the antibonding pi orbital of a polar molecule like H,CO where the electron
density is forced by the orthogonality condition to be higher at the less attractive
carbon atom. In the molecular region an electronic excitation implies a smaller
rearrangement between kinetic and potential energy than in the other two regions
because only here Eq. (3) can be used with the equality sign:

|AT|+|4V|=|4E]|. 3

The conditions in the third region with large R contradict both the MO model and
the simple form of the virial theorem (1). We shall discuss this case with the aid of
two examples (H; and H,) in Sect. 4.

The division of the R values into three regions as given above is not absolute
but depends on the choice of the two converging potential curves. Such a treat-
ment could be extended by considering a pair of curves with different dissociation
limits if only the energy changes relative to 4E(o0), AT(0), 4V(o0) are treated.
For this definition of the energy differences Eq. (2) can be applied since

AB(x0) = — 4T(20)=0.54V{(c0). @)

3. Rydberg States and Equilibrium Geometries

It has to be pointed out that the minima of the potential curves do not neces-
sarily belong to the molecular region. Both the 1117,, 1311, states of H, discussed
in [7] have nearly the same equilibrium distance of 1.95 bohr. Therefore we have
AE'(R,)~0 and hence R, belongs to the atomic region. The associated molecular
region is at twice this distance around 4 bohr. In this case the term “‘atomic
region” seems to be misleading but in fact it is not since these states are Rydberg
states whose potential curve is largely dictated by the properties of the correspond-
ing ion. HY has indeed its equilibrium at 2.00 bohr [22].

If a Rydberg state is defined as an electronic state where one electron is weakly
bound in the field of an ionic core and occupies a hydrogenlike orbital which is
much larger than the other occupied orbitals and the nuclear skeleton then the
bonding energy e and the kinetic energy ¢ of the Rydberg electron should approxi-
mately obey the atomic virial theorem ‘

t=—e. (5)

(Note that e is not a Hartree-Fock orbital energy but the total kinetic and potential
energy of the Rydberg electron in the field of the core). On the other hand neglect-
ing the perturbation of the core due to the presence of the Rydberg electron we
can estimate the energy difference between the free ion and the Rydberg state as
AE(R) = —e(R), hence AE'(R)= —¢'(R) and AT(R)= —t(R). Putting these ex-
pressions into (2a) we get ‘

—t(R)=e(R)+ Re'(R) (6)
and from (5) and (6) follows Re'(R)=0, i.e. because of ¢'(R)=0 the potential
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curve of the Rydberg state is predicted to be parallel to the curve of the ion. This
result is of course due to assumption (5) and the above definition of a Rydberg
state. But it may be helpful in order to distinguish Rydberg states from other
electronic states with a diffuse outer orbital which however does not behave like
an atomic orbital. Examples for such states are provided e.g. by the bound states
of H; [24] whose potential curves are certainly not parallel to the curve of the
parent ion since the latter is a repulsive 1/R curve. The other way round : whenever
the potential curve of an electronic state with one weakly bound electron is not
parallel to the curve of the parent ion, then the effective field and the orthogonality
conditions which determine the shape of the outer orbital deviate sensibly from
spherical symmetry and we have no proper Rydberg state.

Furthermore let us consider two electronic states of the same orbital configura-
tion, e.g. a singlet-triplet pair. As a consequence of the virial theorem (2) the two
states cannot have simultaneously parallel potential curves and, for a given R, an
identical space part of the wave function. Especially the assumption of identical
orbitals contradicts the assumption of identical equilibrium distances R, ,=R, .
The first condition yields AT(R,) =0, the second one AE’(R,)=0 and their com-
bination contradicts Eq. (2) if AE(R)+0. It follows that the above assumptions
can be justified for small AE. If there is a large singlet-triplet splitting on the other
hand different orbitals are to be expected for the two states since the triplet state
tends to maximise the (stabilising} exchange integral whereas the singlet will
minimise it in order to have a low energy. The molecular situation is realised if

AE(R)< — RAE'(R)<2AE(R). ‘ {7a, b)

Here the first inequality follows from AT>0, the second one from AV>0 by
virtue of (2). Hurley [23] has shown that indeed

AE(Ry=AE(R,)-R,/R (7a")

is a good approximation near the equilibrium in many cases. This equation is
equivalent to (7a). (7b) yields

AE(R)=AE(R,)(R,/R). (709

The above considerations are suitable also for larger molecules. In the polyatomic
case the virial theorem has a more complicated form depending on the internal
coordinates and the corresponding derivatives of the potential surfaces. But at the
equilibrium geometry the conditions (2) can still be applied.

4. Application of the Virial Theorem to H; and H,

In this section we shall study the question to what extent the shape of the
electronic wave functions of HJ and H, are dictated by the virial theorem. The
examples of these species are especially well suited because for both very accurate
investigations, also for large interatomic distances, are available [15, 16, 18, 24].
In both cases we have a pair of potential curves converging to the same fragmenta-
tion limit: 22", 2X.* going to H(1s)+H™ for H and !X, 3X,F going to H(ls)+
H(1s) for H, such that the requirements of Sect. 2 are fulfilled.
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According to the calculations of Ruedenberg ef al. [14, 15] the molecular
region of the 2X %, 25 * pair of states of HJ extends from 1.5 bohr to 2.8 bohr, the
minimum of the lower curve being at 2.0 bohr. For shorter distances the energy
partitioning is qualitatively the same as in the united atom He ™ : The diffuse 2po,
orbital has less kinetic energy and less nuclear attraction than the 1so, such that
AT <0, AV>0. For large distances the inverse is true as predicted in Sect. 2.
g, is more contracted to the nuclei, hence AV=A4V,,<0, i.e. there is less nuclear
attraction in the lower state than in the higher one. Qualitatively the surplus of
kinetic energy in the higher state can be attributed to the node of the o, orbital.
Here we have a case where the electronic wave function of the energetically lower
state is more diffuse than the function of the upper state. In the molecular region
we have still 47> 0 although the o, orbital is now expanded and ¢, contracted
such that A¥">0 (more nuclear attraction for ¢,). For the *IT,, ’n , pair of states
of Hj arising from H* + H(2pn) the same conclusions can be drawn [25].

For H, a qualitative discussion of the shape of the wave function is more
difficult since the kinetic energy is now distributed over two electrons, the potential
energy consists of nuclear attraction and electron repulsion and the correct wave
function has a complicated form because of electron correlation. Analysis of the
results of Kolos and Wolniewicz [16] reveals a molecular region of the *2,", 3Z.*
pair of states extending from 1.4 bohr (A7=0) to 2.1 bohr (47 =0). Our qualitative
discussion shall be based on the extended Hartree—Fock function of Bowman,
Hirschfelder and Wahl [18] and following Mulliken [17] we call the * X" state N,
the 3X,F state T':

Yy=Adet |o,0 g 8| —pdet 0,20, (8a)
P,r=2"12det |o,0 6,8 —27 "7 det |o,0 0,0 (8b)

The coefficients 4, u are tabulated e.g. in Ref. [18]: at the H, equilibrium A~ 0.99,
u~0.11, for infinite separation A=p=2""21In Ref. [18] the o,, ¢, orbitals of
¥, and ¥, are drawn for three different situations with R=0, R=1.5 bohr and
R =5 bohr. Note that these three distances represent just the three tegions defined
above. Calling # the orbital exponent of the atomic orbitals we observe that for

R=0 n(o,, T)Xn(o,, N)~n(o,, N)»n(o,, T) (9a)
R=1.5bohr #(o,, T)~n(s,, N)<n(o,, N)>»n(,, T) (9b)
R=5bohr (g, T)~N(G, N)~n(@, N)~n(,. T)~1. (%)

For short and medium distances the T state o, orbital is distinctly more diffuse than
the g, orbital of N (9a, b). Furthermore near the united atom 7 has a somewhat
more contracted ¢, than N (9a). For sufficiently large separation the atomic
orbitals are all nearly equal (9¢).

(9a) is the consequence of the virial theorem for atoms as discussed above.
If R increases from 0 to 1.5 bohr all the orbitals expand because of the separation
of the nuclear charges and hence there is a decrease of the kinetic energy. But this
decrease is much more significant for the N state because the g, orbital which is
doubly occupied in N and singly occupied in T expands faster than o, [18]. Hence
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at R=1.5 bohr the N state has less kinetic energy than T such that AT>0. For
large separations both orbitals have nearly the same weight in both wave func-
tions (8) and also the same dimensions (9¢). However a simplified wave function
putting A=y and identical orbitals ¢,, 6, in (8a, b) for large but not infinite dis-
tances like e.g. the Heitler-London function [26] yields 4AT=0, AV=4V,, in
contradiction to the virial theorem (Sect. 2). Furthermore both the Heitler-
London and the more flexible Wang functions (o,, 0, varied independently for
both states [27, 281) predict a crossing of Nand T at R~ 50 bohr [29, 301, violating
a theorem probably due to Wigner (see [31]) which states that a two electron sys-
tem has always a singlet ground state. But already the wave functions (8) with
Az p for all finite distances conform to the requirements of the virial theorem
even if identical orbitals for both states are assumed in the region of nearly
separated atoms. Due to correlation the ¢, orbital has a somewhat increased and
o, a reduced weight in ¥, compared to ¥, such that AT>0 for ¢, has more
kinetic energy than o,. In contrast to HJ there is no need for an expansion of the
ground state orbitals since 4V ~ 4V, <0 even for identical orbitals: In the triplet
state there is less electronic repulsion because of the Fermi hole which keeps the
electrons apart from each other, conforming to the common interpretation of
Hund’s rule. However, due to correlation effects the singlet state has less kinetic
energy and is more stable than the triplet state such that Hund’s rule fails in this
situation.

This work is part of the project Nr. SR 2.159.74 of the “Schweizerischer Nationalfonds” .
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