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With aid of the virial theorem formulated for the energy differences of two electronic states some 
theorems on the wave functions of diatomic molecules have been proven. It is shown how proper 
Rydberg states can be distinguished from other electronic states with a diffuse outer orbital by virtue 
of the virial theorem and that a singlet-triplet pair of excited states cannot have the same equilibrium 
geometry and identical orbitals simultaneously. Furthermore if the two states have the same dissociation 
limit a theorem on the differences of the kinetic and the potential energy can be derived which allows 
an understanding of the shape of the electronic wave functions. As an application the wave functions 
and the ordering of the lowest states of H~ and H 2 have been discussed. 
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1. Introduction 

Recent ly  different  au tho r s  have po in t ed  out  tha t  the c o m m o n  in t e rp re t a t ion  o f  
H u n d ' s  rule  can be shown to be incomple t e  [-1-8]. The  vir ial  t he o re m has  been 
i nvoked  in some o f  these d iscuss ions  I-3, 4, 7]. This t he o re m is a bas ic  mechanica l  
law which  states tha t  the expec ta t ion  values  o f  the kinet ic  energy T, the  po ten t i a l  
energy V and  the to ta l  energy E are  connec ted  by  the re la t ions  ( l a ,  b):  

T =  - E  ( l a )  

V = 2 E  ( l b )  

i f  we cons ider  a force-free a tomic  or  molecu la r  system held toge ther  by  C o u l o m b i c  
forces. ( l b )  fo l lows f rom ( l a )  and  T+ V=E;  for  T, V, E the energies o f  any  s tate  
can be subst i tu ted .  F o r  molecules  the  to ta l  energy somet imes  is r ep laced  by  the 
to ta l  e lect ronic  energy Tel, Vel, E~I and  the  vir ial  t he o re m has a s o m e w h a t  different  
f o rm  (see Sect. 2). H e r e b y  however  the  separab i l i ty  o f  e lect ronic  and  nuc lear  
m o t i o n  and  the existence o f  po ten t i a l  surfaces are  assumed.  

Cons ide r  two different  b o u n d  states  o f  an a t o m  no t  degenera te  wi th  one. 
ano ther .  I f  the  two states do  no t  arise f rom the same elect ronic  conf igura t ion ,  
wi th in  the  t e r m i n o l o g y  o f  the M O  a p p r o x i m a t i o n  we can say tha t  in the  h igher  s ta te  
h igher  lying orb i ta l s  are  occup ied  which are  empty  in the  lower state. H ighe r  ly ing 
a tomic  orb i ta l s  are  in genera l  cha rac te r i sed  by  a greater  n u m b e r  o f  nodes  and  there-  
fore  the  kinet ic  energy o f  the e lec t rons  should  increase.  On the o the r  h a n d  the 
vir ial  t h e o r e m  ( l a )  requires  tha t  the  h igher  state has less kinet ic  energy than  the 
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lower one (E is always negative). As a consequence excited atomic orbitals are 
much more spread out than low lying ones for so they can have more nodes and 
less kinetic energy (a reduced curvature) at the same time. 

This result also supports the estimation of Ahlrichs for the long-range behavi- 
our of  electronic wave functions [9-11] saying that any bound state wave function 
upon removal  of  one electron to infinity decays faster than an exponential function 
with an exponent proport ional  to the square root of  the ionisation energy of  the 
state in question. One is tempted to conclude hereupon that a bound electronic 
wave function is the more  diffuse the closer its energy lies to the ionisation limit. 
This conclusion applies for Rydberg-like systems (see Sect. 3) but we shall show a 
counterexample in Sect. 4. Let us turn now to two states belonging to the same 
electronic configuration like 1p and 3p of He (ls) (2p). Here in contrast  to the 
simple MO picture the ls  and 2p orbitals cannot be identical for both states but in 
the higher state (1p) there is an expansion, in the lower one a contraction of  the 2p 
orbital because of  the virial theorem (la)  and there is more electron repulsion in 
3p [2, 5, 20, 21]. With identical orbitals both states would have the same kinetic 
and nuclear attraction energy and the singlet-triplet splitting is determined by the 
difference of the electron repulsion. Although this crude picture predicts a wrong 
partitioning of the total energy, it has been shown by Katriel [4] that the exchange 
integral (1 s 2p/2p 1 s) determines the sign and to a smaller extent also the magnitude 
of  the singlet-triplet splitting. The variational principle acts as a "driving force" 
and yields in general useful results for the total energy even if applied to trial func- 
tions with insufficient flexibility. The virial theorem on the other hand allows a 
qualitative discussion of the shape of the correct wave function but it cannot  replace 
the variational principle as a tool for calculating wave functions. 

2. Molecules 

Application of  the virial theorem to molecules suggests a restriction to diatomic 
molecules. Because of  the appearance of two further parameters - the interatomic 
distance R and the slope of  the potential curve E ' = d E / d R  [12, 13] - it is more 
difficult to draw precise conclusions than in the atomic case. However  Ruedenberg 
has successfully studied the binding properties of  H f  with the aid of  the virial 
theorem [14, 15]. For  small R we have the additional drawback that the results 
cannot  be compared with the limiting case of  the "united a tom"  unless the nuclear 
repulsion is subtracted f rom the energy expression. Some of  these difficulties can 
be avoided if we formulate the virial theorem for the energy differences AE, A V, 
A T of two different electronic states. A means hereby the difference "upper  state 
minus lower state" ; hence AE >~ 0 (we shall not consider a case of  Crossing poten- 
tial curves). The virial theorem reads now [7] 

A T= - A E -  RAE'  (2a) 

A V= 2AE+ RAE'  (2b) 

F rom (2) we see at once - since R is positive - that diverging potential curves 
(AE'> 0) lead to a more  negative A T and a more positive A V than would be the 
case for an a tom with the same AE, whereas converging potential curves (AE' < O) 



Application of the Virial Theorem to the Study of Molecular Electronic Wave Functions 53 

AV) 0 AT<O AV>O AT>O AV(O AT)O 

Fig. 1. Schematic illustration of Eq. (2) for the case of two states with the same dissociation limit. 
The decomposition of the total energy difference AE into potential and kinetic energy A V, A T is shown 
as a function of R. The atomic region (left), molecular region (middle) and the region of nearly separated 
atoms (right) are indicated. 

yield a less negative A T and a less positive A V. This second case is of  interest 
because in contrast  to the virial theorem for atoms AT>O or A V < 0  can also 
occur. In fact it follows f rom (2) that A T =  0 if AE(R) vanishes proport ional  to 
R - 1 or that A V= 0 if AE goes proport ional  to R - 2. Let us therefore consider the 
special case of  two potential curves leading to the same dissociation limit (e.g. 
~120 + and 312, + of H2, see [ 16-18]). The shapes of  the curves for large R depend on 
the fragment charges: Ion pairs show R - 1 curves and attraction even at large dis- 
tances whereas neutral fragments will have curves which are roughly proport ional  
to e x p ( - A R )  (attraction or repulsion). The same exponential decrease of  AE 
applies for ions dissociating into a charged and a neutral fragment. Therefore for 
such a pair we can divide the range of possible R values into three regions (see 
Fig. 1). An "a tomic"  region near R = 0  is characterised by AT<O, A V>0.  For  
sufficiently large R we have a region o f  "nearly separated a toms"  with A T >  O, 
A V< 0 and between these two there is a "molecular region" with A T >  0, A V> 0 
(for A T +  A V= AE>~O everywhere). For  fluctuating AE even more changes of  the 
signs of  A T and A V could occur. In the limit of  dissociation (R--  oo) we have f rom 
(2) A E = A V = A T = O  since AE'  goes to zero much faster than R -1. 

The meaning of these three regions can be explained as follows : In the atomic 
region the electrons see rather a nearly pointlike positive charge than an extended 
nuclear skeleton. The potential curves are mainly determined by the nuclear 
repulsion, so A E ' ~  0. Therefore the electronic wave functions behave like atomic 
functions: the higher the energy of  a (bound) state, the lower is its kinetic energy. 
This implies that the higher lying components  of  a given electronic configuration 
(e.g. singlets) show orbital expansion compared with the lower lying components  
(triplets) similar to atoms [5, 7, 19]. 

The situation in the molecular region corresponds to the simple molecular 
orbital (MO) picture where the higher lying orbital and hence in general the 
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higher lying state are characterised by a larger number of  nodes and therefore by a 
higher kinetic energy. Furthermore in the MO model also the potential energy is 
often higher (less negative) for the higher lying orbital as can be seen considering 
e.g. the antibonding pi orbital of  a polar molecule like H2CO where the electron 
density is forced by the orthogonality condition to be higher at the less attractive 
carbon atom. In the molecular region an electronic excitation implies a smaller 
rearrangement between kinetic and potential energy than in the other two regions 
because only here Eq. (3) can be used with the equality sign : 

I A T I + IA v I >1 IAEI. (3) 

The conditions in the third region with large R contradict both the MO model and 
the simple form of  the virial theorem (1). We shall discuss this case with the aid of  
two examples (H~ and H2) in Sect. 4. 

The division of  the R values into three regions as given above is not  absolute 
but depends on the choice of  the two converging potential curves. Such a treat- 
ment could be extended by considering a pair of  curves with different dissociation 
limits if only the energy changes relative to AE(~) ,  AT(G), A V(~)  are treated. 
For  this definition of  the energy differences Eq. (2) can be applied since 

A E ( ~ )  = - A T ( ~ )  = 0.5A V(~).  (4) 

3. Rydberg States and Equilibrium Geometries 

It has to be pointed out that the minima of the potential curves do not neces- 
sarily belong to the molecular region. Both the 11/]u, 13//u states of  H 2 discussed 
in [7] have nearly the same equilibrium distance of  1.95 bohr. Therefore we have 
Aft(Re)  ,,~ 0 and hence R e belongs to the atomic region. The associated molecular 
region is at twice this distance around 4 bohr. In this case the term "atomic 
region" seems to be misleading but in fact it is not since these states are Rydberg 
states whose potential curve is largely dictated by the properties of the correspond- 
ing ion. H~- has indeed its equilibrium at 2.00 bohr [22]. 

If  a Rydberg state is defined as an electronic state where one electron is weakly 
bound in the field of  an ionic core and occupies a hydrogenlike orbital which is 
much larger than the other occupied orbitals and the nuclear skeleton then the 
bonding energy e and the kinetic energy t of the Rydberg electron should approxi- 
mately obey the atomic Virial theorem 

t =  - e .  (5) 

(Note that e is not a Hartree-Fock orbital energy but the total kinetic and potential 
energy of  the Rydberg electron in the field of  the core). On the other hand neglect- 
ing the perturbation of  the core due to the presence of  the Rydberg electron we 
can estimate the energy difference between the free ion and the Rydberg state as 
A E ( R ) = - e ( R ) ,  hence A E ' ( R ) = - e ' ( R )  and A T ( R ) = - t ( R ) .  Putting these ex- 
pressions into (2a) we get 

- t(R) = e(R) + Re'(R) (6) 

and from (5) and (6) follows Re'(R)= 0, i.e. because of  e'(R)= 0 the potential 
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curve of  the Rydberg state is predicted to be parallel to the curve of  the ion. This 
result is of  course due to assumption (5) and the above definition of  a Rydberg 
state. But it may be helpful in order to distinguish Rydberg states from other 
electronic states with a diffuse outer orbital which however does not behave like 
an atomic orbital. Examples for such states are provided e.g. by the bound states 
of H I  [24] whose potential curves are certainly not parallel to the curve of  the 
parent ion since the latter is a repulsive 1/R curve. The other way round:  whenever 
the potential curve of an electronic state with one weakly bound electron is not 
parallel to the curve of the parent ion, then the effective field and the orthogonality 
conditions which determine the shape of  the outer orbital deviate sensibly from 
spherical symmetry and we have no proper Rydberg state. 

Furthermore let us consider two electronic states of  the same orbital configura- 
tion, e.g. a singlet-triplet pair. As a consequence of  the virial theorem (2) the two 
states cannot have simultaneously parallel potential curves and, for a given R, an 
identical space part of  the wave function. Especially the assumption of  identical 
orbitals contradicts the assumption of identical equilibrium distances R1, e : R 2 ,  e"  

The first condition yields A T(Re)= 0, the second one AE'(R~)=0 and their com- 
bination contradicts Eq. (2) if AE(R)~0.  It follows that the above assumptions 
can be justified for small AE. If  there is a large singlet-triplet splitting on the other 
hand different orbitals are to be expected for the two states since the triplet state 
tends to maximise the (stabilising) exchange integral whereas the singlet will 
minimise it in order to have a low energy. The molecular situation is realised if 

AE(R) <<. - RA E'(R) <~ 2AE(R). (7a, b) 

Here the first inequality follows from AT>>. O, the second one from A V~> 0 by 
virtue of (2). Hurley [23] has shown that indeed 

AE(R) = AE(Re). R~/R (7a') 

is a good approximation near the equilibrium in many cases. This equation is 
equivalent to (7a). (7b) yields 

A E(R) = A E(Re)(Re/R ) 2. (7b') 

The above considerations are suitable also for larger molecules. In the polyatomic 
case the virial theorem has a more complicated form depending on the internal 
coordinates and the corresponding derivatives of  the potential surfaces. But at the 
equilibrium geometry the conditions (2) can still be applied. 

4. Application of the Virial Theorem to H~- and H z 

In this section we shall study the question to what extent the shape of  the 
electronic wave functions of  H~- and Hg are dictated by the virial theorem. The 
examples of  these species are especially well suited because for both very accurate 
investigations, also for large interatomic distances, are available [15, 16, 18, 24]. 
In both cases we have a pair of  potential curves converging to the same fragmenta- 
tion limit: z Z f ,  z Z f  going to H ( l s ) +  H § for H~- and 1Zg+, ~Z~ + going to H ( l s ) +  
H(ls) for H 2 such that the requirements of Sect. 2 are fulfilled. 
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According to the calculations of  Ruedenberg et al. [14, 15] the molecular 
region of  the 22;0+, 22;.+ pair of  states of  H~- extends from 1.5 bohr  to 2.8 bohr, the 
minimum of  the lower curve being at 2.0 bohr. For  shorter distances the energy 
partitioning is qualitatively the same as in the united atom He + : The diffuse 2pau 
orbital has less kinetic energy and less nuclear attraction than the lsa o such that 
A T < O ,  A V>O. For  large distances the inverse is true as predicted in Sect. 2. 
~ru is more contracted to the nuclei, hence A V =  AVe, < 0, i.e. there is less nuclear 
attraction in the lower state than in the higher one. Qualitatively the surplus of 
kinetic energy in the higher state can be attributed to the node of  the a,  orbital. 
Here we have a case where the electronic wave function of  the energetically lower 
state is more diffuse than the function of  the upper state. In the molecular region 
we have still A T >  0 although the a,  orbital is now expanded and ag contracted 
such that A V> 0 (more nuclear attraction for %). For the 2II , ,  2H o pair of  states 
of  H~ arising from H § + H(2pn) the same conclusions can be drawn [25J. 

For  H 2 a qualitative discussion of  the shape of  the wave function is more 
difficult since the kinetic energy is now distributed over two electrons, the potential 
energy consists of  nuclear attraction and electron repulsion and the correct wave 
function has a complicated form because of  electron correlation. Analysis of  the 
results of  Kolos and Wolniewicz [16] reveals a molecular region of  the 1270+, 32;"+ 
pair of  states extending from 1.4 bohr  (A T =  0) to 2.1 bohr (d V= 0). Our qualitative 
discussion shall be based on the extended Har t ree-Fock function of  Bowman, 
Hirschfelder and Wahl [18] and following Mulliken [17] we call the 1Z0+ state N, 
the 32;+ state T: 

7"N = 2 det 1%c~ o-off I - -#  Oct [a,e a,fl I (8a) 

g ' r = 2  -1/2 det lao~ a, f l[--2 - 1 / 2  det [~,~ a0fl [ (8b) 

The coefficients 2, # are tabulated e.g. in Ref. [18]: at the H 2 equilibrium 2~0.99,  
#~0.11 ,  for infinite separation 2 = # = 2  -1/2. In Ref. [18] the %, a,  orbitals of  
~N and 7* r are drawn for three different situations with R=0 ,  R =  1.5 bohr and 
R = 5 bohr. Note that these three distances represent just the three regions defined 
above. Calling t / the orbital exponent of  the atomic orbitals we observe that for 

R = 0 q(a o, T)  > q(a o, N )  ~ q(a, ,  N )  >>q(a,, T) (9a) 

R =  1.5 bohr tl(aoz T )~ t l (ao ,  N ) < q ( a , ,  N)>>t/(a,, T) (9b) 

R = 5 bohr tl(ao, T) ~ q(a o, N )  ~ q(a, ,  N) ~ t/(a,, T) ~ 1. (9c) 

For  short and medium distances the Tstate a,  orbital is distinctly more diffuse than 
the a,  orbital of  N (9a, b). Furthermore near the united atom T has a somewhat 
more contracted a o than N (9a). For  sufficiently large separation the atomic 
orbitals are all nearly equal (9c). 

(9a) is the consequence of the virial theorem for atoms as discussed above. 
If  R increases f rom 0 to 1.5 bohr  all the orbitals expand because of the separation 
of  the nuclear charges and hence there is a decrease of  the kinetic energy. But this 
decrease is much more significant for the N state because the % orbital which is 
doubly occupied in N and singly occupied in T expands faster than a u [ 18]. Hence 
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at R =  1.5 bohr the N state has less kinetic energy than T such that AT>O. For 
large separations both orbitals have nearly the same weight in both wave func- 
tions (8) and also the same dimensions (9c). However a simplified wave function 
putting 2 = # and identical orbitals ~u, ~0 in (8a, b) for large but not infinite dis- 
tances like e.g. the Heitler-London function ]-26] yields AT=O, AV=AVee in 
contradiction to the virial theorem (Sect. 2). Furthermore both the Heitler- 
London and the more flexible Wang functions (%, a, varied independently for 
both states [27, 28]) predict a crossing of N a n d  Tat R ~ 50 bohr [29, 30], violating 
a theorem probably due to Wigner (see [31])  which states that a two electron sys- 
tem has always a singlet ground state. But already the wave functions (8) with 
2 >/~ for all finite distances conform to the requirements of the virial theorem 
even if identical orbitals for both states are assumed in the region of  nearly 
separated atoms. Due to correlation the % orbital has a somewhat increased and 
a~ a reduced weight in 7~N compared to 7Jr such that A T>O for a,  has more 
kinetic energy than %. In contrast to H~ there is no need for an expansion of  the 
ground state orbitals since A V ~  A Vee < 0 even for identical orbitals: In the triplet 
state there is less electronic repulsion because of  the Fermi hole which keeps the 
electrons apart from each other, conforming to the common interpretation of  
Hund's rule. However, due to correlation effects the singlet state has less kinetic 
energy and is more stable than the triplet state such that Hund's rule fails in this 
situation. 

This work is part of  the project Nr. SR 2.159.74 of the "Schweizerischer Nationalfonds". 
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